Study on Carbon Metabolism in the Human Body

Tsuyoshi MASUDA, Kensaku MATSUSHITA, Yasuhiro TAKO, Yuji NAKAMURA Department of Environmental Simulation

Abstract

In the safety assessment around the spent nuclear fuel reprocessing plant at Rokkasho, Aomori, ¹⁴C is expected to be the most attributable to radiation dose received by the neighboring population, among radioactive nuclides released from the plant. The radiation dose due to ¹⁴C reaches around one third of the total annual radiation dose estimated as 22 μ Sv. However, the estimate of ¹⁴C dose is thought to be rather conservative, because of possible overestimation of ¹⁴C dose conversion factor. This might be largely attributed to excessive simplification of the metabolic model of ¹⁴C in the human body. The objective of the study is to clarify experimentally carbon metabolism, especially the biological half-time, of ¹⁴C in the human body.

Using the data from previous experiments on carbon metabolism through ingestion of protein, fat and sugar, a Human Body Carbon Metabolism Model was developed. To confirm the validity of the the model, changes in ¹³C isotopic ratio after oral administration of ¹³C labeled foods (rice and soybean) were examined during 16 weeks in breath air, urine, feces, hair and serum in three adult males. The estimate of the change in ¹³C concentration by the model was compared to experimental data. Finally, retention of ¹⁴C in the human body after oral intake of ¹⁴C through ingestion of a typical Japanese diet was estimated by the model. The estimate of ¹⁴C retention was lower than that predicted by the ICRP model on which is based the dose coefficient of organic ¹⁴C intake for the general public.

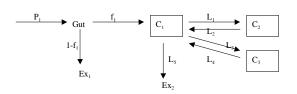


Fig. 1 Human Body Carbon Metabolism Model. C_1 : low molecular weight carbon pool, C_2 : high molecular weight carbon pool, Gut: intestine, P₁: intakes of carbon, f₁: fraction absorbed, L₁, L₃: transfer rate, L₂, L₄, L₅: excretion rate, Ex₁: feces, Ex₂: breath and urine. Absorption of carbon in Gut was assumed to continue during the short period between administration and time when the highest ¹³C concentration in breath was observed.

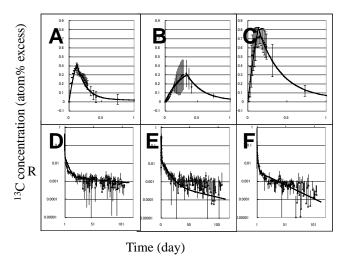


Fig. 2 ¹³C concentration in breath after oral administration of amino acid, fat, and sugar.
A, D: amino acid, B, E: fat, C, F: sugar, A-C: time 0 to 24 hr, D-F: day 1 to day112. Solid lines show approximation by the Human Body Carbon Metabolism Model. Data were adopted from a series of experiments preceding this study.

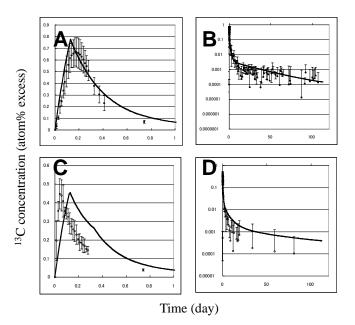
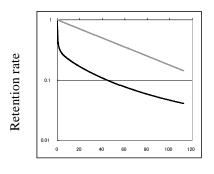



Fig. 3 Comparison between the expected ¹³C concentration and experimental data in breath.

A, B: rice, C, D: soybean, A, C: time 0 to 24 hr, B, D: day 1 to day 112. Solid line show the predictions by Human Boby Carbon Metabolism Model.

Time (day)

Fig. 4 Comparison between the model and the ICRP estimates of ¹⁴C retention in the human body.

Black line: estimate by the developed model, Gray line: estimate by ICRP model.