Radiation-induced Menopause and Body Weight Gain Are Dependent on Dose and Age at the Time of Exposure

Shingo NAKAMURA, Satoshi TANAKA, Ignacia TANAKA Department of Radiobiology

Abstract

We have shown that excess body weight gain and premature menopause occur simultaneously in female SPF B6C3F1 mice continuously irradiated with gamma-rays at a low dose-rate of 20 mGy/22h/day from 9 weeks of age. In the present work, we investigated the effect of radiation dose and age at the time of exposure on radiation-induced menopause and weight gain by continuously irradiating female B6C3F1 mice at 20 mGy/22h/day either from 9 weeks of age or 30 weeks of age to total accumulated doses of 1.5, 2.5, 3 and 5 Gy. A significant number of mice continuously irradiated at total accumulated doses of 2.5, 3 and 5 Gy exhibited premature menopause and body weight gain at 34 weeks of age, as compared to 55 weeks of age (21 weeks later) in mice that received a total dose of 1.5 Gy from 9 weeks of age. There was no significant difference in body weight among the 2.5, 3 and 5 Gy irradiated groups. At total accumulated doses of 2.5, 3 and 5 Gy, mice irradiated from 30 weeks of age showed significant weight gain 11 weeks earlier as compared to those irradiated from 9 weeks of age. Our results show that the excess body weight gain in mice continuously exposed to 20 mGy/22h/day is related to radiation-induced menopause.

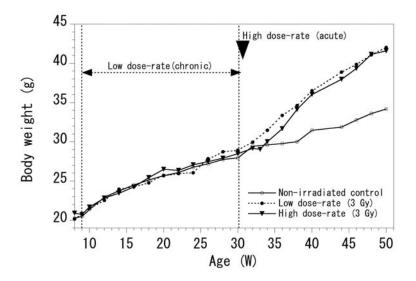


Fig. 1 Time course for alternations of body weight in mice irradiated with 3 Gy at low-dose rate or high-dose rate.

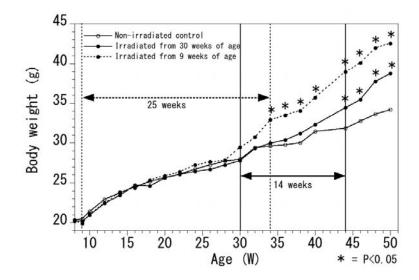


Fig. 2 Time course for alternations of body weight in mice continuously irradiated at low-dose rate from 9 or 30 weeks of age.