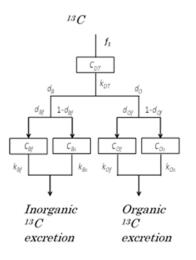
Metabolism of Radiocarbon and Tritium in the Human Body

Tsuyoshi MASUDA, Kensaku Matsushita, Yasuhiro TAKO, Yuichi TAKAKU, Shun'ichi HISAMATSU


Department of Radioecology

Abstract

In the radiation safety assessment for nuclear facilities including the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, the internal doses of the public due to ingested ¹⁴C and tritium have been estimated using the dose conversion factors based on the simple ICRP metabolic models in the human body. Although the biological half-life of tritium water (HTO) in the human body was examined in several cases, actual data on the metabolism of organic ¹⁴C and organically bound tritium (OBT) in the diet are quite limited. The objective of this research program is to establish experimentally the metabolic models of organic ¹⁴C and OBT in the human body for more realistic dose estimation. To obtain metabolic parameter values of ¹⁴C, which are also utilized for OBT, we used the stable isotope of ¹³C to label organic molecules on orally administration experiments as a substitute for ¹⁴C.

Until FY 2014, ¹³C-labeled glucose, palmitic acid, and leucine were administered to volunteers, followed by measuring the ¹³C concentration in their breath, urine, feces, and hair. In FY2015, ¹³C-labeled linoleic acid and glutamic acid were administered, followed by collecting breath and hair samples as representative of carbon excretion via inorganic form and organic form, respectively. Following the measurement of ¹³C concentration in breath samples in FY2015, hair samples were measured in FY2016. In 2016, ¹³C-labeled oleic acid and glycine were also administered to volunteers, followed by collecting breath and hair samples. The breath samples were measured for ¹³C, and the hair samples will be analyzed in FY2017. All processes of the experiment were approved by the IES Review Board for Human Subject Experiments, and written informed consents were obtained from all volunteers.

A model was developed, having five compartments consisting of a compartment for ¹³C in the digestive tract (C_{DT}), and two compartments each for ¹³C excreted inorganically (C_{Bf} and C_{Bs}) and organically (C_{Of} and C_{Os}), and parameter values in the model were determined by using excretion data of ¹³C. Mean distribution ratios to the inorganically excreted route of ¹³C in palmitic acid and glutamic acid were higher than those in linoleic acid and leucine, respectively, suggesting that the former two are preferentially utilized for energy production. However, un-recovered ¹³C was obtained in the model calculation for each substance, with an especially large proportion of 0.38 ± 0.16 for linoleic acid, We simulated carbon retention in the body after ingestion of the diet with nutrition compositions according to the Dietary Reference Intakes for Japanese (2015). The metabolic models for palmitic acid, linoleic acid, glutamic acid, leucine, and glucose was applied to the nutrition components in the diet, while the components for which models have not yet been constructed were represented by one of the substances mentioned above. We also assumed that the un-recovered ¹³C was directly transferred to a total carbon compartment of 16 kg C. The 50-year cumulative body burden for ¹³C, as an index of the committed dose of the radioisotope ¹⁴C, was found to be 51 g d, which is comparable with 58 g d by the ICRP metabolic model. Further accumulation of model parameters of different substances is required to obtain the value that is more realistic.

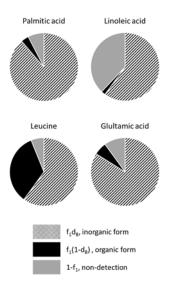


Fig.2 Transition rate by carbon excretion d C_{Bs} , pathway $f_I d_B$, excretion via inorganic form path.

 $f_I(1-d_B)$, excretion via organic form path. 1- f_I , excretion not detected experimentally.

Fig.1 Structure of the metabolic model for ingested ¹³C. Compartment of ¹³C: C_{DT} , digestive tract; C_{Bf} and C_{Bs} , fast and slow compartments for inorganic excretion, respectively; C_{Of} and C_{Os} , fast and slow compartments for organic excretion, respectively.

d is distribution factor, and k is elimination rate constant.