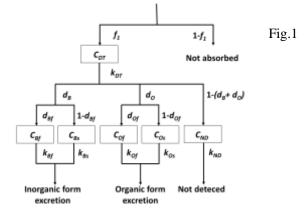
Metabolism of Radiocarbon and Tritium in the Human Body

Tsuyoshi MASUDA, Kensaku Matsushita, Yasuhiro TAKO, Yuichi TAKAKU, Shun'ichi HISAMATSU


Department of Radioecology

Abstract

In the radiation safety assessment for nuclear facilities including the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, the internal doses of the pubic due to ingested ¹⁴C and tritium have been estimated using the dose conversion factors based on the simple ICRP metabolic models in the human body. Although the biological half-life of tritium water (HTO) in the human body was examined in several cases, actual data on the metabolism of organic ¹⁴C and organically bound tritium (OBT) in diet are quite limited. The objectives of this research program are to establish experimentally the metabolic models of organic ¹⁴C and OBT in the human body for more realistic dose estimation. To obtain metabolic parameter values of ¹⁴C, which are also utilized for OBT, we used the stable isotope of ¹³C to label organic molecules on oral administration experiments as a substitute for ¹⁴C.

Until FY 2016, various ¹³C-labeled nutrients were administered to volunteers, followed by measuring the ¹³C concentration in their breath and hair as representatives of inorganic and organic excreta, respectively. In FY2017, hair samples from volunteers administered with ¹³C-labeled oleic acid or glycine were measured, and ¹³C-labeled phenylalanine and glucose were also administered to volunteers, followed by collecting breath and hair samples. The breath samples were measured for ¹³C, and the hair samples will be analyzed in FY2018. All processes of the experiment were approved by the IES Review Board for Human Subject Experiments, and written informed consents were obtained from all volunteers.

The recovery of ¹³C of administered nutrients was 83-97% so far excluding unsaturated fatty acids for which recovery was 59-60%. Although the undetected proportion of ~10% may be attributed to a non-absorbing fraction in the gastrointestinal tract, the large undetected proportion of unsaturated fatty acids was hard to explain by only a non-absorbing fraction in the tract. We assumed that the undetected fraction was accumulated in adipose tissue, which is reported to have a long mean residence time of carbon based on analyzing ¹⁴C that originated from nuclear weapon testing. A tentative metabolism model was constructed based on our results and the reported mean residence time. The 50-year cumulative body burden for ¹⁴C, as an index of the committed dose of the radioisotope ¹⁴C, in unsaturated fatty acids was estimated to be larger than that of the other nutrients by the model.

Structure of the metabolic model for ingested ¹³C. Compartments of ¹³C: C_{DT} , digestive tract; C_{Bf} and C_{Bs} , fast and slow compartments for inorganic excretion, respectively; C_{Of} and C_{Os} , fast and slow compartments for organic excretion, respectively; C_{ND} , compartment for no detected component of administered ¹³C. *d* is distribution factor and *k* is elimination rate constant.

Parameter	Oleic acid	Linoleic acid*	Palmitic acid [*]		
k_{DT}	11土4	3.8±1.1	2.6±0.3		
d_B	0.61 ± 0.04	0.61 ± 0.07	0.90 ± 0.05		
$d_{B\!f}$	$0.57 {\pm} 0.07$	$0.48 {\pm} 0.07$	0.56 ± 0.08		
k_{Bf}	3.2±0.7	20±3	3.2±0.3		
k_{Bs}	0.11 ± 0.03	0.081 ± 0.015	0.096 ± 0.029		
d_O	0.018 ± 0.001	0.019 ± 0.005	0.034 ± 0.008		
$d_{O\!f}$	0.53±0.17	0.41 ± 0.05	0.66 ± 0.20		
k_{Of}	0.52 ± 0.09	2.1 ± 1.7	0.44±0.13		
k_{Os}	0.022 ± 0.016	0.043 ± 0.017	0.044 ± 0.002		

Table 1 Parameters for carbon in fatty acids

Mean value \pm standard deviation. *, Determined using data from previous research.

Table 2Parameters for carbon in amino acids				
Parameter	Glycine	Glutamic acid*	Leucine*	
k_{DT}	14±3	25±8	7.5±1.1	
d_B	0.75 ± 0.02	0.84 ± 0.03	0.57 ± 0.05	
$d_{B\!f}$	$0.37 {\pm} 0.03$	0.73 ± 0.02	0.52 ± 0.05	
$k_{B\!f}$	28±6	36±12	14±3	
k_{Bs}	$0.18 {\pm} 0.01$	0.21 ± 0.03	0.13 ± 0.06	
d_O	0.23 ± 0.01	0.061 ± 0.014	0.37±0.04	
$d_{O\!f}$	0.48 ± 0.02	0.39 ± 0.08	0.33 ± 0.02	
k_{Of}	0.22 ± 0.02	0.39 ± 0.05	0.29±0.01	
k_{Os}	0.011 ± 0.001	0.017 ± 0.008	0.013±0.000	

Mean value \pm standard deviation.^{*}, Determined using data from previous research.

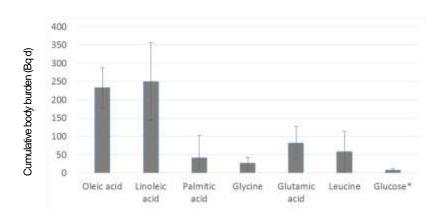


Fig.2 Cumulative body burden for 50 years after an ingestion of 1 Bq of ¹⁴C in nutrients. *, Determined using data from previous research.